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Variety of electrical behaviours
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Ascoli et al., 2008



Variety of electrical behaviours
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Komendantov et al., 2019



Variety of electrical behaviours
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Clemente-Perez et al., 2017 RT cells, unpublished



Variety of electrical behaviours
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Serafin et al., 1996

MS non-cholinergic neurons MS cholinergic neurons

Spontaneous firing

Rhythmic firing
Sub-threshold oscillations

Hyperpolarizing current

Low-rate firing
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Neuron Class vs. Individual Neuron

Allen Cell ID: 593398067
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Allen Cell ID: 593054045 

• We have seen examples of 
classification (more or less 
quantitative/automatic) of electrical 
properties

• Taken singularly, each neuron shows 
electrical properties potentially 
unique as in the case of the 
morphologies

• This is relevant because we can 
decide to model individual neurons 
or neuron classes



Go beyond HH model
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• There are a variety of ion channels (lecture 4) that can create the different electrical 
behaviors.

• Despite we started to characterize genetically-defined ion channels, it is still 

convenient to consider classes of channels

• The different ion channels can be modelled using HH formalism (lecture 4).

• Dendrites can influence somatic behavior (lecture 5), and soma can influence the 

dendritic behavior (see below).

• Even if synaptic inputs end up in the soma, dendrites combine (integrate) them in a 
complex manner (dendritic computation) (see below).



Different ion channels contribute to different electrical features

11Toledo-Rodriguez, 2005



Different neurons have different ion channels
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Toledo et al., 2004

• Channel composition can be 

studied with electrophysiology 
(pharmacology), anti-body 

staining, single cell multiplex RT-
PCR, single cell transcriptome.

• In the image, relative correlation 
of the different ion channel and 
calcium binding protein genes 

with electrical phenotypes 
(regression coefficient).



Different compartments have different ion channels
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Lay and Jan, 2006



Ion channels show different distributions

14

Migliore and Shepherd, 2002

Rajnish, PhD thesis



Backpropagating action potential (BPAP)
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• An action potential (generated in soma or 
AIS) propagates backwards in the dendrites

• Ion channel composition affects how reliable 
the BPAP is transmitted

• BPAP can release the Mg2+-block necessary 

to induce an NMDAR-mediated plasticity

Spruston, 2008



Dendritic spikes
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• Na+ spikes. Brief events

• Ca2+ spikes. Larger and broader events

• NMDA spikes. Due to release of Mg2+. They 
remain where glutamate release occurs

• Backpropagation-activated Ca2+ spike (BAC 
spike). Synaptic stimulation + BPAP (figure)

• Dendritically initiated spikes are required for 
LTP or LTD induction in response to strong 

synaptic stimulation or during pairing of 
EPSPs with postsynaptic bursts

Larkum et al., 1999

BAC

BPAP

EPSP

Ca2+ spike



Synaptic inputs, dendritic spikes and AP interact
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• Dendrites are not very excitable and electrical events in the 
dendrites remains local

• However, depolarization of the dendrite can travel to the 
soma with more or less attenuation depending on the 
morphology and the ion channel composition

• Synaptic inputs, dendritic spikes and BPAP (or bAP) can 
interact if they are in the right space and time

• This interaction influences AP generation, plasticity, 

sensory tuning, feature selection…

• Few events can perform simple operation (see next). 
However, considering the complexity of the dendritic arbor 

we can imagine a sophisticated dendritic computation Stuart and Spruston, 2015



Dendritic computation: AND, OR, AND-NOT operation
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AND

• Synaptic inputs occurs in a dendrite in short sequence and generate a dendritic spike 

(coincidence detector)

• Proximal input enhances distal dendritic spike

• BPAP interacts with distal input and generates dendritic spike

• Several dendritic spikes trigger an AP

OR

• Two sets of inputs in two different branches can generate AP alone

AND-NOT

• On-path inhibition can block distal excitatory input

• Off-path inhibition can reduce dendritic spike



Challenges
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• What to model: individual cells vs classes
– There seem to be classes of prototypical electrical behavior, but all cells are also unique (due 

their unique morphology and ion channels)

– No final consensus on what classes exist (and on which modalities to establish the classes, 
i.e. morphology, electrical, genetic)

• Multimodal datasets/pooling of data

– For detailed models, we need multiple modalities (e.g. morphology, ephys, transcriptome, 
others) but such data sets are rare

– The alternative is to pool data across experiments & labs, which has the challenge of 
standardized protocols so that data can be pooled

• Difficult to obtain data: some parameters are much more inaccessible than 
others (e.g. channel localization and maximum conductances)



Summary 1
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• Building “realistic” models of specific neurons requires many parameters 
(morphology, ion channels, ion channel kinetics, ion channel distributions)

• One way to make models meaningful and achievable is to derive as many 
parameters as possible from experimental data

• Multi-compartment Hodgkin-Huxley is a well suited formalism for the body 
of data that is available today

• A data-driven model is a “data-ready” model, i.e. it is easy to absorb new 
data as it comes about

• Some parameters are much more inaccessible than others (e.g. channel 
localization and maximum conductances) and will need to be constrained 
differently
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Underconstrained parameters
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• We normally have the characterization of the cell in terms of electrical 

behavior
• In most of the cases, we have in vitro somatic recordings of the cell 

responding to a limited number of artificial stimuli
• The composition and distribution of ion channels is generally unknown. 

We can make assumptions based on similar cells described in literature

• The number of unknown parameters normally exceeds the known ones



What to do with underconstrained parameters?
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• More (novel) experiments

• Guess parameters and hand-tune

• Systematic grid search

• Regularize parameters

• Infer parameters from other (related) and more easily measurable 
properties

• Parameter Optimization



A typical example
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• The morphology is given
• Ion channel models are given (already 

constrained)

• Different ion channels are present in different 

compartments

• For simplicity, assume that they are uniformly 
distributed within the compartment

• Ion channel models follow HH formalism

𝐼! = 𝑔!(𝑉" − 𝐸!)

𝑔! = 𝑔̅!𝑚#ℎ$
Migliore et al., 2018



A typical example
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• 𝑔̅! is the maximum conductance and 
represents the channel density

• Unknown parameters to be optimized include: 

𝑔̅! for the different currents in different 

compartments, passive properties (Rm, gleak, 

Eleak)
• Other parameters are known (Ex, Cm, Ra)

Migliore et al., 2018



A typical example
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Define the unknown parameters (𝑔̅!, Rm, gleak, 
Eleak) so the neuron model reproduces the 

electrical behavior recorded experimentally (from 

the same cell of the reconstruction or from 

another cell). Let’s consider only 1 trace per input

Migliore et al., 2018



A typical example
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We can keep fixed the known parameters 𝑃" vary the unknown parameters 𝑃#

We can express our model as 𝑀(𝑃", 𝑃#, 𝑡, 𝐼$%&) and the target experimental traces as 

𝑇(𝑡, 𝐼$%&)

If we assign values to the 𝑃#, all the parameters can be represented as 𝑃⃗. The model can 

be simulated under the same experimental conditions and can produce model traces.
We can define a cost function or error as following:

𝑒𝑟𝑟 = 𝑚𝑜𝑑𝑒𝑙 − 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

Aim of the optimization is to find a set of parameters 𝑃⃗ for which the error is sufficiently 

small.



Cost functions
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There are different ways in which we can 
define the cost function. The simplest way is 

to compare model and experiment traces 

point by point.



When Is a Model a Good Model?
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à actually those are two repetitions of the same cell!!



Choose the Metric Carefully!
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Error:  0.3 (A.U.)Error: 0.3 (A.U.)



Cost functions
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However, not all the points have the same relevance 
for the behavior of the neuron. We could extract 

features (see figure) from model and experiment traces 

and compare them.

Drukmann et al., 2007



Cost functions
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𝑒𝑟𝑟𝑜𝑟 =/ 𝐹"%&,( − 𝐹)!*,(

A feature-based cost function can be expressed as:

Each term i is called objective or objective function and the optimization is called multi-
objective.

Remember that we are comparing the model with one trace or one set of traces (one for 
each stimulus). The fact that we may have multiple stimuli and one trace per stimulus 

does not change much. In fact, different inputs give different features (AP height for 0.2 

nA, AP height for 0.4 nA…).



Cost functions
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𝑒𝑟𝑟𝑜𝑟 =/
𝐹"%&,( − 𝐸(𝐹)!*,()

𝑆𝐷(𝐹)!*,()

If we have multiple experimental traces for each stimulus, so we have multiple measures 
for each feature, then for each feature we have a mean and a standard deviation (or 

another measure of the variability).

We can observe that some features are highly variable, while others are quite fixed.

A simple distance between model and experiment feature does not consider the variability 

of the features. We can weight the differences by the standard deviation of the feature 
measured in the experiment.



Pareto front
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In multi-objective optimization, we say that one solution dominates another if it does better 
than the other solution in at least one objective and not worse than the other solution in all

other objectives. If there are M objective functions fj(x), j=1 . . . M, then a solution x1 is 

said to dominate a solution x2 if both the following conditions hold:

The optimization produces a set of solutions which do 
not dominate each other called pareto front (see 

image).

Drukmann et al., 2007



Search strategies
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To find the best solution (global minimum) or at least 
an acceptable solution (local minimum), we have to 

test different parameter sets and evaluate the 

resulting model.

The simplest approach is the parameter scan that is 

possible only when the number of parameters and 
the parameter space is limited.

When this is not the case, the parameter space 

cannot be fully explore and we need strategies to 

sample the space in a faster and smarter way. Van Geit et al., 2008



Evolutionary algorithm
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• Mutation. The value is changed within its 
boundary by a certain amount (generally, both 

defined by the user)

• Stop criteria. You can stop with the maximum 

number of generations

• In real cases, from the pareto front, it is possible 
to select an individual that perform slightly better 

than the others

Van Geit et al., 2008



Evolutionary algorithm
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Migliore et al., 2018



Summary 2
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• For model parameters that cannot be obtained from experiment, parameter 
optimization can be viable approach

• Metaheuristics such as evolutionary algorithms combined with smart metrics 
and multi-objective optimization have proved useful for finding conductance 
values and distributions for multi-compartment neuron models

• They can find parameter sets that produce a certain behavior and reveal 
trade-offs in the solution space

• Solutions are not guaranteed to be unique and generalization has to be 
tested
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Hay et al., 2011
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Hay et al., 2011
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Somatic behavior Dendritic behavior



Target Features
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Channels used in the Model
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“We included ten key active ionic currents 
known to play a role in L5 PCs or generally 
in neocortical neurons, with kinetics taken 
strictly from the experimental literature. 
Kinetics of ion conductances that were 
characterized in room temperature (21°C) 
were adjusted to the simulation 
temperature of 34°C using Q10 of 2.3…” 

Fast inactivating Na+ current, Inat
Persistent Na+ current, INap

Non-specific cation current, Ih
Muscarinic K+ current, Im
Slow inactivating K current, IKp
Fast inactivating K current, IKt

Fast, non inactivating K+ current, IKv3.1
Intracellular [Ca2+] dynamics 
High voltage activated Ca2+ current, ICa_HVA
Low voltage activated Ca2+ current, ICa_LVA
Small-conductance, Ca2+ activated K+ current, ISK



Fitting for Somatic AND Dendritic Behavior is difficult

44

Apical dendrites



Two Step Approach

45

• Fitting all 20 target features in one single optimization proved difficult 
(despite 2000 generations and population size of 5000), and models 
acceptable for somatic firing did not generalize well to BAC firing and vice 
versa

• However, BAC firing is mostly constrained by dendritic conductances, 
somatic firing by soma/AIS conductances

• Two-step approach: 
– First fit all conductances for optimal BAC firing behavior, 
– Use this to initialize a second optimization of somatic conductances for 

somatic firing (while keeping dendritic channels fixed)



Results
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Take Home Messages from Hay et al. 2011
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• Faithful model of a layer 5b pyramidal cell (rat), a principal cell of the 
neocortex, exhibiting a wide range of previously observed somatic and 
dendritic properties 

• Demonstration that previously developed multi-objective optimization and 
feature-based fitness functions can be used to built such complex models, 
however, two step approach was needed

• The model has since become a reference model for this cell type (ie. used 
for many subsequent studies)

• Since the publishing of this paper, the adoption of a different class of 
optimization algorithm has made it possible to fit the model in one step à
https://github.com/BlueBrain/BluePyOpt

https://github.com/BlueBrain/BluePyOpt


Migliore et al. 2018
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Experimental Data – Hippocampus CA1 Pyramidal Cells
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Morphology

Electrophysiology



Model Assumptions (Pyr cAC)
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Optimization Results (Pyr cAC)
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Degeneracy of Found Solutions (Pyr cAC)
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Individual optimization yielding acceptable solutions

The pixel colors represent the value of the 
parameter, normalized to the maximum value 
obtained from all optimizations 

Red labels: parameters with <0.2 sd across all solutions

Sorted according to average value 
over all optimizations



Take Home Messages from Migliore et al. 2018
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• Multi objective optimization and feature-based fitness used to constrain 
morphologically detailed models of different hippocampal neuron types

• Several models for each type passed the selection threshold and this is 
used to analyze what parameters are conserved or different (degeneracy)

• For the pyramidal cell class, the most stable (ie. for which the optimization 
did not identify degeneracy) parameters were: passive properties, Ih, KM, 
Calcium, and Ca-dependent K currents

• This links with and provides some explanation for previous findings, where
– KM was previously known to be dominant factor for excitability and accommodation and 

specific mutations can lead to neonatal epilepsy

– Ih was previously known for its importance for synaptic integration and that even small 
decreases have previously been show to have major effects mechanisms related to cognitive 
function



Summary 3
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• Multi objective optimization and feature based fitness functions have proven 
to be effective tools to build some of the most faithful and complex models of 
neuron types to date (in diverse rodent brain regions such as cortex, 
hippocampus, cerebellum, basal ganglia and even for human cells)

• Not only are those methods useful to generate models, but the method’s 
property of producing families of models (pareto-equivalent) can be used to 
gain insights on the degeneracy and criticality of certain conductances

• The methods are readily available (open source, as a service); will present in 
more detail in next lecture



Web Resources 1 - Neuroelectro.org
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Integrated Data from Literature (via neuroelectro.org)
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http://neuroelectro.org


Cell types reported in the literature

57from neuroelectro.org

http://neuroelectro.org


Web Resources 2 – Blue Brain Neocortical Microcircuit Portal
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https://bbp.epfl.ch/nmc-portal/



Morphologies, Electrophysiology & Neuron Models
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https://bbp.epfl.ch/nmc-portal/



Web Resources 3 - Allen Cell Types Database
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https://celltypes.brain-map.org



Allen SDK and API
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Web Resource 4 – ModelDB (https://modeldb.yale.edu)
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https://modeldb.yale.edu/


Lecture Summary
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• Building “realistic” models of specific neurons requires many parameters 
(morphology, ion channels, ion channel kinetics, ion channel distributions)

• One way to make models meaningful and achievable is to derive as many 
parameters as possible from experimental data, when this is not possible, 
resorting to parameter optimization can be a viable approach

• Specifically, multi-objective optimization with feature-based fitness functions 
have shown to be effective for modeling morphologically detailed neuron 
classes across brain regions and species and are widely used

• Multiple online resources are available to provide useful data or data & 
corresponding models, but piecing together all relevant data for a particular 
neuron class of interest is still very time-consuming and an underconstrained
problem



What you have learnt
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• Different electrical behavior. Petilla nomenclature
• Challenges in modeling the neurons. Single neuron vs. neuron class, lack of

data…
• BPAP, dendritic spike, dendritic computation
• Example of optimization. Cost function.
• Electrical features. Evolutionary algorithm. Pareto front.


