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Burst Continuous Delayed Stuttering

Petilla terminology: nomenclature of
features of GABAergic interneurons e
of the cerebral cortex

non-fast spiking

The Petilla Interneuron Nomenclature Group (PING)*

Abstract | Neuroscience produces a vast amount of data from an enormous diversity Adapting
of neurons. A neuronal classification system is essential to organize such data and
the knowledge that is derived from them. Classification depends on the
unequivocal identification of the features that distinguish one type of neuron from
another. The problems inherent in this are particularly acute when studying cortical
interneurons. To tackle this, we convened a representative group of researchers to
agree on a set of terms to describe the anatomical, physiological and molecular

Irregular spiking

o | |

features of GABAergic interneurons of the cerebral cortex. The resulting 'f’i‘rtizgs'c B UJ‘ m (] IH I n I [ omv|
terminology might provide a stepping stone towards a future classification of these [ ot N INVAVA VAV 400 ms
complex and heterogeneous cells. Consistent adoption will be important for the -
success of such an initiative, and we also encourage the active involvement of L]

. . o . . . . Accelerating L
the broader scientific community in the dynamic evolution of this project. //»«///J/ . 20mVL_

/ o 200 ms

E P F L Ascoli et al., 2008
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A Rebound Bursts
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Variety of electrical hehaviours

MS non-cholinergic neurons MS cholinergic neurons
A ® * ®
Spontaneous firing
e Low-rate firing
Rhythmic firing
Sub-threshold oscillations
- I 20 mV
500 ms 500 ms
C D
Hyperpolarizing current L * I 20 mV 20 mV
A ] A
, | 0.5nA : o 105nA

E P F L Serafin et al., 1996



« We have seen examples of
classification (more or less
guantitative/automatic) of electrical
properties

« Taken singularly, each neuron shows
electrical properties potentially
unique as in the case of the
morphologies

 This is relevant because we can
decide to model individual neurons
Oor neuron classes
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Go heyond HH model

« There are a variety of ion channels (lecture 4) that can create the different electrical

behaviors.

« Despite we started to characterize genetically-defined ion channels, it is still

convenient to consider classes of channels
« The different ion channels can be modelled using HH formalism (lecture 4).

« Dendrites can influence somatic behavior (lecture 5), and soma can influence the

dendritic behavior (see below).

« Even if synaptic inputs end up in the soma, dendrites combine (integrate) them in a

complex manner (dendritic computation) (see below).
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Figure 1. Different inward and outward currents and the ion channels that underlie each current [14-20,22-27,69,70,28-32]. Scale bars, 20 mV and 200 ms.

Toledo-Rodriguez, 2005
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Different neurons have different ion channels

« Channel composition can be
studied with electrophysiology
(pharmacology), anti-body
staining, single cell multiplex RT-

PCR, single cell transcriptome.

* Inthe image, relative correlation
of the different ion channel and
calcium binding protein genes

with electrical phenotypes

— gression coefficient).
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m Delay spiking
-0.6 < m Initial burst interval

Toledo et al., 2004
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a Somatodendritic Axonal
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Excitatory inputs Kv4.2 Kv3 throughout dendrite Nev KvE Cav
Proximal Presynaptic
i Kv2.1 nerve
EPSPs', B fenddres Kvil terminals

Distal
dendrites

‘Nedes of Ranvier

2O
Inhibitory AlS Nav, KCNQ, Kv3.1b 10
HCN Cav nputs: Nav, KCNQ i o
O
Dendritic action potentials IPSPs
Neurotransmitter
Back propagation release

Lay and Jan, 2006
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Distance from soma (arbitrary units)

Distance from soma (arbitrary units)

Migliore and Shepherd, 2002
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« An action potential (generated in soma or

AlIS) propagates backwards in the dendrites

* lon channel composition affects how reliable
the BPAP is transmitted

 BPAP can release the Mg?+-block necessary

to induce an NMDAR-mediated plasticity

=PrL
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15



+ Na* spikes. Brief events v
| a i S — EPSP
+ (Ca?* spikes. Larger and broader events —
«  NMDA spikes. Due to release of Mg2+. They _li‘ﬁ,’}jv
| L2/3 —p— BPAP
remain where glutamate release occurs
« Backpropagation-activated Ca?+ spike (BAC B
spike). Synaptic stimulation + BPAP (figure) 4 BAC
»  Dendritically initiated spikes are required for _
LTP or LTD induction in response to strong
synaptic stimulation or during pairing of L5 Ca2+ spike
EPSPs with postsynaptic bursts T

Larkum et al., 1999

=PrL ;



Synaptic inputs, dendritic spikes and AP interact

Passive int ti
a assive integration AP

« Dendrites are not very excitable and electrical events in the e

dendrites remains local J\N\K - -

»  However, depolarization of the dendrite can travel to the —

Dendrites Soma Axon

soma with more or less attenuation depending on the b Acveintegation
morphology and the ion channel composition J\/Qi"ﬂ
*  Synaptic inputs, dendritic spikes and BPAP (or bAP) can

interact if they are in the right space and time

C Backpropagation

« This interaction influences AP generation, plasticity, "

P
sensory tuning, feature selection... J\[\M‘ R

* Few events can perform simple operation (see next).

However, considering the complexity of the dendritic arbor

we can imagine a sophisticated dendritic computation Stuart and Spruston, 2015
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Dendritic computation: AND, OR, AND-NOT operation

AND

*  Synaptic inputs occurs in a dendrite in short sequence and generate a dendritic spike

(coincidence detector)
*  Proximal input enhances distal dendritic spike
« BPAP interacts with distal input and generates dendritic spike
»  Several dendritic spikes trigger an AP
OR
« Two sets of inputs in two different branches can generate AP alone
AND-NOT
*  On-path inhibition can block distal excitatory input

«  Off-path inhibition can reduce dendritic spike

=PrL
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« What to model: individual cells vs classes

— There seem to be classes of prototypical electrical behavior, but all cells are also unique (due
their unique morphology and ion channels)

— No final consensus on what classes exist (and on which modalities to establish the classes,
i.e. morphology, electrical, genetic)

« Multimodal datasets/pooling of data

— For detailed models, we need multiple modalities (e.g. morphology, ephys, transcriptome,
others) but such data sets are rare

— The alternative is to pool data across experiments & labs, which has the challenge of
standardized protocols so that data can be pooled

 Difficult to obtain data: some parameters are much more inaccessible than
others (e.g. channel localization and maximum conductances)

=PrL
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Summary 1

Building “realistic” models of specific neurons requires many parameters
(morphology, ion channels, ion channel kinetics, ion channel distributions)

One way to make models meaningful and achievable is to derive as many
parameters as possible from experimental data

Multi-compartment Hodgkin-Huxley is a well suited formalism for the body
of data that is available today

A data-driven model is a “data-ready” model, i.e. it is easy to absorb new
data as it comes about

Some parameters are much more inaccessible than others (e.g. channel
localization and maximum conductances) and will need to be constrained
differently

=PrL
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Underconstrained parameters

« We normally have the characterization of the cell in terms of electrical
behavior

* In most of the cases, we have in vitro somatic recordings of the cell
responding to a limited number of artificial stimuli

« The composition and distribution of ion channels is generally unknown.
We can make assumptions based on similar cells described in literature

* The number of unknown parameters normally exceeds the known ones

22



What to do with underconstrained parameters?

« More (novel) experiments

« Guess parameters and hand-tune
- Systematic grid search

* Regularize parameters

« Infer parameters from other (related) and more easily measurable
properties

« Parameter Optimization

=PrL
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A typical example

Apic: pyr cAC

The morphology is given

* lon channel models are given (already

constrained) e
Kad
» Different ion channels are present in different 1h
CaL
compartments Ci
. .. . C(:gk Soma:
» For simplicity, assume that they are uniformly as apic but }
-Kad,
distributed within the compartment * s+ Kas
* lon channel models follow HH formalism Dend:
y : : " :V\:\ Axon:
_ as apic ¢ W \
Ix - gx(Vm _ Ex) - 7480\

KDRax
Na ax
Kn ax
— A mahb Haex

E P F L g AT }/wal\/vvlig‘;‘ﬁore et al., 2018 N



A typical example

* g, is the maximum conductance and

represents the channel density

« Unknown parameters to be optimized include:
g, for the different currents in different

compartments, passive properties (Rm, Gieak

EIeak)

* Other parameters are known (E,, C,,,, Ra)

=PrL

Apic: pyr cAC

Soma:

as apic but
-Kad,
+ KM s, + KA S

Axon:

KDR ax
~Na ax

Kn ax

K, ax

Migliore et al., 2018
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A typical example

Define the unknown parameters (g, Rm, Gicax
Eicak) SO the neuron model reproduces the
electrical behavior recorded experimentally (from
the same cell of the reconstruction or from

another cell). Let’s consider only 1 trace per input

-0.4 0.4 0.8 nA

] 95831000

I T T T T 1

> |
£ -0

> T

0 100 200 300 400 500 600

E P F L time (msec)

I\

Apic: pyr cAC

Soma:

as apic but
-Kad,
+ KM s, + KA S

Axon:

KDR ax
~Na ax

Kn ax

K, ax

Migliore et al., 2018
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A typical example

We can keep fixed the known parameters Ff vary the unknown parameters Fv)

We can express our model as M (F]:, P, t, I;j) and the target experimental traces as
T(t; Iinj)
If we assign values to the E,’, all the parameters can be represented as P. The model can

be simulated under the same experimental conditions and can produce model traces.

We can define a cost function or error as following:

err = |model — experiment|

Aim of the optimization is to find a set of parameters P for which the error is sufficiently

small.

=PrL
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There are different ways in which we can
define the cost function. The simplest way is
to compare model and experiment traces

point by point.

N
1 . 2
rms = \I N Z (Vdatalil = Vmodelli)

i=0

=PrL
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-> actually those are two repetitions of the same cell!!
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Error: 0.3 (A.U.)

=PrL

Error: 0.3 (A.U.)
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However, not all the points have the same relevance
for the behavior of the neuron. We could extract
features (see figure) from model and experiment traces

and compare them.

=PrL

Voltage

l-—a—-

Current —I

Figure 2. Feature extraction. Voltage response (fop) to a step depolarizing
current (bottom) of the first 200 ms following stimulus onset of the trace dis-
played in Figure 1A. Extraction of the six features is schematically portrayed.
1, spike rate; 2, accommodation index (Equation 3); 3, latency to first spike;
4, AP overshoot; 5, After hyperpolarization depth; 6, AP width. For values of
the different features in the case of the two electrical classes depicted in
Figure 1, see Table 1.

Drukmann et al., 2007
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A feature-based cost function can be expressed as:

Each term i is called objective or objective function and the optimization is called multi-
objective.

Remember that we are comparing the model with one trace or one set of traces (one for
each stimulus). The fact that we may have multiple stimuli and one trace per stimulus

does not change much. In fact, different inputs give different features (AP height for 0.2

nA, AP height for 0.4 nA...).

=PrL .



If we have multiple experimental traces for each stimulus, so we have multiple measures
for each feature, then for each feature we have a mean and a standard deviation (or
another measure of the variability).

We can observe that some features are highly variable, while others are quite fixed.

A simple distance between model and experiment feature does not consider the variability
of the features. We can weight the differences by the standard deviation of the feature

measured in the experiment.

error = 2 |Fmodl exp,i)l
SD (Fexp i)

33



In multi-objective optimization, we say that one solution dominates another if it does better
than the other solution in at least one objective and not worse than the other solution in all
other objectives. If there are M objective functions fi(x), j=1 . .. M, then a solution x' is

said to dominate a solution x? if both the following conditions hold:

KIS

fi(x") < fi(x*) forallj=1...M 5,.| :. |
fi (x") < fi (x?) foratleastonek € {1,2 ,... M) § Al 'tr_a“
The optimization produces a set of solutions which do g 1o
not dominate each other called pareto front (see §ns :% ]
image). P B ankkb L LELTLET PR

AP overshoot error

| | Drukmann et al., 2007
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To find the best solution (global minimum) or at least

an acceptable solution (local minimum), we have to

-
-

test different parameter sets and evaluate the

Error value

O e
R T O

-
>

resulting model.

The simplest approach is the parameter scan that is

ol

i

possible only when the number of parameters and \

e o

the parameter space is limited.

—

When this is not the case, the parameter space LI T 0'1
N persiste” )

cannot be fully explore and we need strategies to

on|eA Joug

Van Geit et al., 2008

sample the space in a faster and smarter way.
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Evolutionary algorithm

« Mutation. The value is changed within its
boundary by a certain amount (generally, both
defined by the user)

« Stop criteria. You can stop with the maximum
number of generations

* Inreal cases, from the pareto front, it is possible
to select an individual that perform slightly better

than the others

=PrL
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Evolutionary algorithm
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Summary 2

« For model parameters that cannot be obtained from experiment, parameter
optimization can be viable approach

« Metaheuristics such as evolutionary algorithms combined with smart metrics
and multi-objective optimization have proved useful for finding conductance
values and distributions for multi-compartment neuron models

« They can find parameter sets that produce a certain behavior and reveal
trade-offs in the solution space

« Solutions are not guaranteed to be unique and generalization has to be
tested

=PrL
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Hay et al., 2011
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OPEN @ ACCESS Freely available online PLOS computationaL BioLoGy

Models of Neocortical Layer 5b Pyramidal Cells
Capturing a Wide Range of Dendritic and Perisomatic
Active Properties

Etay Hay'*, Sean Hill? Felix Schiirmann?, Henry Markram?, Idan Segev'3

1 Interdisciplinary Center for Neural Computation and Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel, 2 Brain Mind Institute,
Ecole Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland, 3 Department of Neurobiology, The Hebrew University, Jerusalem, Israel

Abstract

The thick-tufted layer 5b pyramidal cell extends its dendritic tree to all six layers of the mammalian neocortex and serves as
a major building block for the cortical column. L5b pyramidal cells have been the subject of extensive experimental and
modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na*-spiking
behavior as well as key dendritic active properties, including Ca* spikes and back-propagating action potentials, are still
lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult
rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features
to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with
an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-
propagating action potential activated Ca* spike firing and the perisomatic firing response to current steps, as well as the
experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of
models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells
as well as mechanisms that are sensitive to morphological changes. This automated framework can be used to develop a
database of faithful models for other neuron types. The models we present provide several experimentally-testable
predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to
network activity and its computational capabilities.

July 2011 | Volume 7 | Issue 7 | 1002107
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Hay et al,, 2011
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Target Features

Table 1. Mean and SD values of features of perisomatic step current firing and of BAC firing.

Features of perisomatic step current firing

Features of BAC firing

Mean=SD, Low

Mean=SD, Reference

Mean=SD, High

Feature frequency frequency (15 Hz) frequency Feature Mean=SD

1. Spike frequency (Hz) 9+0.88 14.5+0.56 225+222 1. Ca** spike peak (mV) 6.73+2.54

2. Adaptation Index 0.0036+0.0091 0.0023+0.0056 0.0046+0.0026 2. Ca** spike width (ms) 3743%1.27

3. ISI-CV 0.1204+0.0321 0.1083+0.0368 0.0954+0.0140 3. Somatic AP spike count (during 3+0
somatic + dendrite current injection)

4. Initial Burst ISI (ms) 57.75+33.48 6.625+8.65 5.38+0.83 4. Mean somatic AP ISI (ms) 9.9+0.85

5. First spike latency (ms) 43.25+7.32 19.13+7.31 7.25*1 5. Somatic AHP depth (mV) —65+4

6. AP peak (mV) 26.23+497 16.52%6.11 16.44+:6.93 6. Somatic AP peak (mV) 25%5

7. Fast AHP depth (mV) —51.95+5.82 —54.19%5.57 —56.56+3.58 7. Somatic AP half-width (ms) 2+0.5

8. Slow AHP depth (mV) —58.04+4.58 —60.51+4.67 —59.99+392 8. Somatic AP spike count (during 10
somatic current injection only)

9. Slow AHP time 0.238+0.030 0.279+0.027 0.213+0.037 9. BAP amplitude at 620 um (mV) 45=10

10. AP half-width (ms) 131*0.17 1.38%0.28 1.86+0.41 10. BAP amplitude at 800 um (mV) 36+9.33

=PrL
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“We included ten key active ionic currents
known to play a role in L5 PCs or generally
in neocortical neurons, with kinetics taken
strictly from the experimental literature.
Kinetics of ion conductances that were
characterized in room temperature (21°C)
were adjusted to the simulation
temperature of 34°C using Q10 of 2.3...”

Fast inactivating Na+ current, |4
Persistent Na+ current, Iyap

Non-specific cation current, |y,
Muscarinic K+ current, |,

Slow inactivating K current, I,
Fast inactivating K current, I

Fast, non inactivating K+ current, lxys 1

Intracellular [Ca2+] dynamics

High voltage activated Ca2+ current, g, pya

Low voltage activated Ca2+ current, lc, (va
Small-conductance, Ca2+ activated K+ current, Igk
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Apical dendrites
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Figure 3. Parameter ranges for acceptable models for either perisomatic step current firing or BAC firing. Distribution of normalized
parameter values in models constrained by BAC firing (red, n =899 acceptable models) or by perisomatic step current firing (black, n=52 acceptable
models). For ease of viewing, the graph region containing parameters at the apical tree is shaded in gray. Red and Black circles correspond to specific
normalized parameter values of the models shown in Figures 1 and 2,
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Two Step Approach

« Fitting all 20 target features in one single optimization proved difficult
(despite 2000 generations and population size of 5000), and models
acceptable for somatic firing did not generalize well to BAC firing and vice

versa

« However, BAC firing is mostly constrained by dendritic conductances,
somatic firing by soma/AlS conductances

« Two-step approach:
— First fit all conductances for optimal BAC firing behavior,

— Use this to initialize a second optimization of somatic conductances for
somatic firing (while keeping dendritic channels fixed)
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Take Home Messages from Hay et al. 2011

« Faithful model of a layer 5b pyramidal cell (rat), a principal cell of the
neocortex, exhibiting a wide range of previously observed somatic and
dendritic properties

« Demonstration that previously developed multi-objective optimization and
feature-based fitness functions can be used to built such complex models,
however, two step approach was needed

« The model has since become a reference model for this cell type (ie. used
for many subsequent studies)

« Since the publishing of this paper, the adoption of a different class of
optimization algorithm has made it possible to fit the model in one step -
https://github.com/BlueBrain/Blue PyOpt

=PrL
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https://github.com/BlueBrain/BluePyOpt

Migliore et al. 2018
G PLOS |t

The physiological variability of channel density
in hippocampal CA1 pyramidal cells and
interneurons explored using a unified data-
driven modeling workflow

Rosanna Migliore'*, Carmen A. Lupascu’, Luca L. Bologna', Armando Romani®?,

Jean-Denis Courcol?, Stefano Antonel?, Werner A. H. Van Geit®>2, Alex M. Thomson?,
Audrey Mercer®?3, Sigrun Lange®#*, Joanne Falck?®, Christian A. Réssert?, Ying Shi?,
Olivier Hagens®, Maurizio Pezzoli®, Tamas F. Freund®7, Szabolcs Kali®®7,

Eilif B. Muller»?, Felix Schiirmann®?, Henry Markram?, Michele Migliore®'

L)

1 Institute of Biophysics, National Research Council, Palermo, Italy, 2 Blue Brain Project, Ecole
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Experimental Data - Hippocampus GA1 Pyramidal Gells

Morphology
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Model Assumptions (Pyr cAC)

=PrL

|

Apic: pyr cAC

Kor d
Nad
Kpd

CaN
CalL
CaT

a
Cagk Soma:

as apic but
-Kad,
+Kys,+K,s

Dend:

Axon:

A
N
AN
= KDRax
- ~Na ax
-7 Ky ax
K, ax

as apic

50



Optimization Results (Pyr cAC)
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Degeneracy of Found Solutions (Pyr cAC)

0.8
The pixel colors represent the value of the
parameter, normalized to the maximum value 06
obtained from all optimizations o4
Red labels: parameters with <0.2 sd across all solutions
0.2
h e_pas ax
e_pas d \_ Ra ax
E NS
K, ax
Na ax
Ky d

Sorted according to average value
over all optimizations

Individual optimization yielding acceptable solutions
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Take Home Messages from Migliore et al. 2018

« Multi objective optimization and feature-based fitness used to constrain
morphologically detailed models of different hippocampal neuron types

« Several models for each type passed the selection threshold and this is
used to analyze what parameters are conserved or different (degeneracy)

« For the pyramidal cell class, the most stable (ie. for which the optimization
did not identify degeneracy) parameters were: passive properties, |, Ky,
Calcium, and Ca-dependent K currents

« This links with and provides some explanation for previous findings, where

— Ky, was previously known to be dominant factor for excitability and accommodation and
specific mutations can lead to neonatal epilepsy

— |, was previously known for its importance for synaptic integration and that even small
decreases have previously been show to have major effects mechanisms related to cognitive
function

=PrL
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Summary 3

« Multi objective optimization and feature based fitness functions have proven
to be effective tools to build some of the most faithful and complex models of

neuron types to date (in diverse rodent brain regions such as cortex,
hippocampus, cerebellum, basal ganglia and even for human cells)

* Not only are those methods useful to generate models, but the method’s
property of producing families of models (pareto-equivalent) can be used to
gain insights on the degeneracy and criticality of certain conductances

« The methods are readily available (open source, as a service); will present in
more detail in next lecture



Web Resources 1- Neuroelectro.org

Y lewroElectro
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Extracted from Literature

i

About Neuron Types Electrophysiology Properties

Articles

NeuroElectro: organizing information on cellular neurophysiology.

Olfactory Bulb Mitral Cell

resistance

200 MQ

-65 mV

1ms

CA1 Pyramidal Cell

400 MQ

=70 mV

Sms

FAQs

Cluster dimension 2

NeuroElectro Publications

Data/API Contribute

The goal of the NeuroElectro Project is to extract information about the electrophysiological properties (e.g. resting membrane potentials and membrane time constants) of
diverse neuron types from the existing literature and place it into a centralized database.

Physiology database

Neuron clustering

L5 pyr
% .:MCs
CA3 CA1
...
GCs Purk

Cluster dimension 1

55



56

Integrated Data from Literature (via neuroelectro.org)

Electrophysiological properties of Neocortex pyramidal cell layer 5-6s from literature:

Legend:

* Reports: Blue dots indicate human-curated values; Orange dots indicate non-human curated values

* Mean+SD: mean and standard deviation of hi

i= View data in table form

« All neurons: mean and standard deviation computed over all neurons in database

Interactivity:

* Mouse over neuron report data points and click to view corresponding publication

o]
©
o
°
2
o
=]
o
e
£
=
1]
a
[5)
o
‘3

* Mouse over y- axis labels to view definition or click to view values across neuron types
* Zoom in on a section of plot by dragging cursor. Zoom out by double clicking on plot.

e Legend: Blue dots

text-mined values human curated; Orange dots = text-mined values not human curated
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http://neuroelectro.org

Neuron-Electrophysiology PCA dimension 2 (rescaled)

Neuron clustering based on electrophysiological properties

172
1.0 Inferior olive neuron P
Olfactory bulb (main) external tufted cell
Neocortex uncharacterized cell
Cerebellum Purkinje cell
Dorsal motor nucleus of vagus motor neuron
Basalis nucleus cholinergic neuron
Ventral tegmental area dopamine neuron
uprachiasmatic nucleus neuron
Cerebellar nucleus cell
Hypoglossal nucleus motor neuron
0.8 Medial entorhinal cortex layer Il pyramidal cell
Olfactory bulb (main) mitral cell
Medial entorhinal cortex layer Il stellate cell
Dentate gyrus hilar cell
Substantia nigra pars compacta dopaminergic cell
Dentate q rus basket cell
Hippocampus CAT'basket cell
Olfactory bulb (maln{ Blanes cell
nferior colliculus neuron
Neoslnalum cholinergic cell
0.6 b oxyte magnocellular cell
‘ Paraventncular hypothalamlc nucleus neurons
Neocortex Martinotti cell
Medial vestibular nucleus neuron
. . Substantia nigra pars reticulata interneuron GABA
Hippocampus CA1 pyramidal cell
Hippocampus CA1 neurogliaform cell
Hlppocamﬁus CA1 oriens lacunosum moleculare neuron
Thalamus relay cell . |
Nucleus of the solitary tract principal cell
0.4 Neocortex pe;ramldal cell layer 5-6 R
® Subiculum pyramidal cel
yg nucleus neuron .
Hippocampus CA3 pyramidal cell )
Locus coeruleus noradrenergic neuron
Neocortex basket cell )
Thalamus parafascicular nucleus neuron
Olfactory cortex semilunar cell
Thalamic reticular nucleus cell
Lateral amygdala projection neuron
0.2 Globus pallidus principal cell
. Neocortex layer 4 stellate cell
Olfactory cortex pyramidal cell
Dentate gyrus granule cell
Neocortex pyramidal cell Ia\%n'l 3
Olfactory bulb (main) granule cell
Neostrlatuiﬂ“ﬁba rgic interneuron
Cerebellum granule cell
Nuclet ns medium spiny neuron
Neostriatum medium spl Iy neuron
0.0 nucleus p ilar ir cell
-0.2
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11

Neuron-Electrophysiology PCA dimension 1 (rescaled)

from neuroelectro.org
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Web Resources 2 - Blue Brain Neocortical Microcircuit Portal

Digital Reconstruction of Neocortical Microcircuitry

=PrL

Blue Brain Project @

Home Microcircuit Literature Consistency Experimental Data Videos Images Tools Downloads Forum About SignIn

https://bbp.epfl.ch/nmc-portal/

The Neocortical Microcircuit
Collaboration Portal

This portal provides an online public resource of the Blue Brain
Project's first release of a digital reconstruction of the microcircuitry
of juvenile Rat somatosensory cortex, access to experimental data
sets used in the reconstruction, and the resulting models. The
following functionality is provided through this portal to support
community engagement to use and refine the reconstruction.

e Neocortical Microcircuit - an interactive browser of the
anatomical and physiological properties of the reconstructed
microcircuit, which includes facts and figures, detailed analyses,
simulation videos, model and data downloads.
Literature Consistency - a database of published
experimental papers that were used either to constrain
parameters of the reconstruction directly, or against which the
reconstruction was assessed to be quantitatively or qualitatively
consistent. This is intended to be an active list that can be
discussed and extended by the community.
e Videos - a collection of computer generated visualizations of in
silico experiments.
e |mages - a collection of images illustrating the various steps
in the reconstruction process.
e Experimental Data - experimental data sets used in the
reconstruction process.
Tools -tools and documentation for
reconstructing, simulating and analyzing the reconstruction.
Downloads - downloadable models from the reconstruction.
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Data

animal preview
animal CO60600A2
J
animal C240300C1 -
P
) s

animal CO10600B2

Data

animal CO80400A3

- animal

animal =
B95 L] L]
animal [aan]
Cc9 - .
animal fe—
C12 - "
animal oo
A53 -
animal —
A61 - (]
animal /
A3 !

EPFL -

hysiology & Neuron Models

Neurons

Models of individual neurons (in the NEURON simulation environment) can be obtained from the me-type fact sheets. A model package contains a morphology file, the ion channel descriptions, the synapse
descriptions and templates to instantiate the cell. There is code to construct the model, distribute the ion channels and synapses on the morphology, generate a GUI, and inject current clamp and synaptic input
into the model.

The morphology description is a formatted as a Neurolucide ASCII file. The ion channel and synapse description are available as NEURON MOD files. The code for the templates, GUI and simulations is written in
the NEURON HOC language or Python. The files containing the synaptic parameters and m-type mappings are tab-separated files.

The complete set of neuron models is available here

YYou can select specific neuron models in the interface below or by browsing to the relevant me-type fact sheet.

A JSON file with some extra data about each neuron model, like the resting membrane potential, input resistance and membrane time constant, can be downloaded here
NeuroML2 version

Thanks to a collaboration with Padraig Gleeson of the Open Source Brain, the model packages can be converted to NeuroML2:
https://github.com/OpenSourceBrain/BlueBrainProjectShowcase/blob/master/NMC/NeuroML2/README.md

Afile with the NeuroML2 versions of the model packages is available here

+0u
+ 0L23°C
= 0L23.MC

= 0123 MCeAC

Rl I IR i
-—I -—. 5 _—. l _—. l
e tasans P R = https://bbp.epfl.ch/nmc-portal/
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Web Resources 3 - Allen Gell Types Databhase

Cell Summaries

EPFL
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https://celltypes.brain-map.org
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Download this data
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ALLEN BRAIN ATLAS

SOFTWARE DEVELOPMENT KIT

CONTENTS WELCOME T0 THE ALLEN SDK

Install Guide
The Allen Software Development Kit houses source code for reading and processing Allen Brain Atlas data. The Allen SDK focuses the Allen Cell Types Database and the Allen Mouse Brain Connectivity Atlas.

Data Resources Functionality relevant to other atlases is coming in future releases.

Cell Types

Mouse Connectivity AI.I.EN CEl.l. TYPES DATABASE

API Access
Model The Allen Cell Types Database contains electrophysiological and morphological characterizations of individual neurons in the mouse primary visual cortex. The Allen SDK provides Python

odels

code for accessing electrophysiology measurements (NWB files) for all neurons and morphological reconstructions (SWC files) for a subset of neurons.

li; LI
Generalized LIF The Database also contains two classes of models fit to this data set: perisomatic biophysical models produced using the NEURON simulator and generalized leaky integrate and fire

Perisomatic Biophysical models (GLIFs) produced using custom Python code provided with this toolkit.

Examples The Allen SDK provides sample code demonstrating how to download neuronal model parameters from the Allen Brain Atlas API and run your own simulations using stimuli from the Allen

Cell Types Database or custom current injections:
Source Documentation P )

e Perisomatic Biophysical Models

allensdk.api package ‘
e Generalized LIF Models

allensdk.config package
allensdk.core package
allensdk.ephys package

allensdk.model package

allensdictest package ALLEN MOUSE BRAIN CONNECTIVITY ATLAS

Github Profile

The Allen Mouse Brain Connectivity Atlas is a high-resolution map of neural connections in the mouse brain. Built on an array of transgenic mice genetically engineered to target specific
cell types, the Atlas comprises a unique compendium of projections from selected neuronal populations throughout the brain. The primary data of the Atlas consists of high-resolution

uuch sEARcH images of axonal projections targeting different anatomic regions or various cell types using Cre-dependent specimens. Each data set is processed through an informatics data analysis
pipeline to obtain spatially mapped quantified projection information.

Go The Allen SDK provides Python code for accessing experimental metadata along with projection signal volumes registered to a common coordinate framework. This framework has
structural annotations, which allows users to compute structure-level signal statistics.
Enter search terms or a module, class or function
name. See the mouse connectivity section for more details.
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Web Resource 4 - ModelDB (hitps://modeldh.yale.edu)

medougal

Advanced search

ModelDB Help
User account
Login

Register

Find models by
Model name
First author
Each author

Region(circuits)

Find models for

type
Current
Receptor
Gene
Transmitters
Topi
Simulator
Methods

Find models of
Realistic Networks

Neurons

Electrical synapses (gap

unctions)
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ModelDB

Amyloid beta (IA block) effects on a model CA1 pyramidal cell (Morse ¢

Download zip file Auto-launch

Help downloading and running models

Model Information Model File Citations Model Views @ Simulation Platform ~ 3D Print

Accession:87284

The model si i provide evid oblique ites in CA1 neurons are susceptible to hyper-excitability by amy
channel, IA. See paper for details.

Reference:

1. Morse TM, Camnevale NT, Mutalik PG, Migliore M, GM (2010) itability of oblique

computational study Front. Neural Circuits 4:16 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal cell
Channel(s): | Na.t; | L high threshold; | N; I T low threshold; | A; | K; I h

Gap Junctions:
Morse et al. 2010 - root: soma - Morse et al. 2010
ca_lon XY  XZ Yz -
¥ cacum
Sin (cacumm.mod) 0.30
¥ cagk (cagk.mod) F 4 0.25
Y cal (cal2.mod) F
4 80.20
can (can2.mod) s
" cat (cat.mod) .
ds (distr.mod) Loao
*hd (h.mod) 0.05
“kad (kadist.mod)
0.0
gkabar 200 400 600 800

-200 0 200 400 600 P
¥kap (kaprox.mod) Distance from root
*kdr (kdrcal.mod)

#na3 (na3n.mod) 0 0.313714

from neuron import h, rxd
import neuron.rxd.node as node
from matplotlib import pyplot

import time

h.load_file('stdrun.hoc')

soma = h.Section()
soma.L = 1
soma.diam = 10

soma.nseg = 11
dend = h.Section()
dend.connect(soma)
dend.L = 50
dend.diam = 2
dend.nseg = 51

def print_nodes():

print ', '.join(str(v) for v in node._states)

print 'defining rxd'

region = rxd.Region(h.allsec(), nrn_region='i")
ca = rxd.Species(region, name='ca', d=1, charge=2, initial:
reaction = rxd.Rate(ca, -ca * (1 - ca) * (0.3 - ca))

Morse TM, Carnevale NT, Mutalik PG, Migliore
itability of oblique i i in early Al

M, Shepherd GM (2010) Abnormal
imer's: a tati

| study Front.

Neural Circuits 4:16(PubMed|

References and models cited by this paper

Acker CD, White JA (2007) Roles of I(A) and morphology
In action potential propagation in CA1 pyramidal cell
dendrites. J Comput Neurosci 23(2):201-16 [Jouna
(PubMed)

+ Roles of I(A) and morphology in AP prop. in CA1
pyramidal cell dendrites (Acker and White 2007)
[Model]

Anderton BH, Callahan L, Coleman P, Davies P, Fiood D,
Jicha GA, Ohm T, Weaver C (1998) Dendritic changes in
Aizheimer's disease and factors that may underlie these
changes. Prog Neurobiol 88:595-609 (Putived]

Andrasfalvy BK, Makara JK, Johnston D, Magee
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Lecture Summary

« Building “realistic” models of specific neurons requires many parameters
(morphology, ion channels, ion channel kinetics, ion channel distributions)

« One way to make models meaningful and achievable is to derive as many
parameters as possible from experimental data, when this is not possible,
resorting to parameter optimization can be a viable approach

« Specifically, multi-objective optimization with feature-based fithess functions
have shown to be effective for modeling morphologically detailed neuron
classes across brain regions and species and are widely used

« Multiple online resources are available to provide useful data or data &
corresponding models, but piecing together all relevant data for a particular
neuron class of interest is still very time-consuming and an underconstrained
problem

=PrL
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What you have learnt

« Different electrical behavior. Petilla nomenclature

« Challenges in modeling the neurons. Single neuron vs. neuron class, lack of
data...

« BPAP, dendritic spike, dendritic computation
« Example of optimization. Cost function.

« Electrical features. Evolutionary algorithm. Pareto front.



